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Introduction
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OFDMA resource allocation schemes

Orthogonal Frequency Division Multiplexing 
(OFDM) is one of the most adopted modulation 
techniques by current air interface standards (e.g. 
802.16, 3GPP Long Term Evolution)

OFDM is robust to the multi-path wireless 
propagation channel
In OFDMA systems it is possible to exploit channel 
frequency diversity by dynamically assigning the 
radio resources to the users. 
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System model

OFDMA synchronized 
system

Nc cells
N subcarriers
K users per cell

Received signal for user k
in cell i on channel n

X
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k,n = H

(i)
k,n,iS

(i)
n + d

(i)
k,n

d
(i)
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OFDMA signal model 

The received signal-to-interference-plus- noise ratio (SINR) 
k,n(i) is (Gk,n,i(i)=|Hk,n,i(i)|2)

The power of the  MAI Ik,n(i), affecting user k in cell i on the 
n channel, is given by

Accordingly, the capacity of user k in cell i on channel n

C
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Definition of convexity

f:D R is convex if D is a convex set and 

for any x,y D and  0 1
Example: function f(x) = maxixi

f ( x+ (1 )y) = max
i
( xi + (1 )yi)

max
i

xi + (1 )max
i

yi

= f(x) + (1 )f(y)

f ( x+ (1 )y) f(x) + (1 )f(y)
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Convex optimization

Standard form convex optimization problem

f0,f1, ,fm are convex; 
equality constraints are affine

0min ( )
.

0 1, ,
.

( )i

f x
s t

f x i m
bAx
= �…

=
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Convex optimization

Standard form problem (not necessarily convex)

Variable         , domain D, optimal value p*=f0(x*)
Lagrangian

Weighted sum of objective and constraint functions

0

0 1, ,
1

min ( )
. .

( )
( , ,) 0
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f x
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f x
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Convex Optimization

Lagrangian dual function g

g is affine in and and therefore concave AND 
convex
Lower bound property: if 0, then g( , ) p
Proof: if x0 is feasible and 0, then

minimizing over all feasible x0  gives p g( , )

0
1 1

( ) ( ) ( ) (, inf ( , n ), ) i f
pm

i i i ix i ix
g f x f h xx xL

= =

= += +
D D

f0(x0) L(x0, , ) inf
x D

L(x, , ) = g( , )
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The dual problem

Lagrange dual problem (LDP)

d = max g( , ) finds best lower bound on p , obtained from 
Lagrange dual function

, ,  are dual feasible if 0 and ,   dom g
Convex optimization problem: since the objective to be 
maximized is concave and the constraint is convex

max g( , )

s.t.

0
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Weak and strong duality

Weak duality: d p
always holds (for convex and non-convex problems)
can be used to find nontrivial lower bounds for 
difficult problems

Strong duality: d = p
does not hold in general
(usually) holds for convex problems
conditions that guarantee strong duality in convex 
problems are called constraint qualifications
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Slater's constraint qualification

Strong duality holds for a convex problem

if it is strictly feasible, i.e.,

It also guarantees that the dual optimum is attained when 
`d >- , i.e., there exists a dual feasible (  , ) with 
g( ; ) = d = p

min f0(x)

s.t.

fi(x) 0 i = 1, . . . , m

Ax = b

x D : fi(x) < 0(i = 1, · · · , m); Ax = b
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Complementary slackness

When strong duality holds if x is primal optimal and ( , ) 
is dual optimal

x minimizes L(x, , )
fi(x )=0 for i=1, ,m, which implies one of the two

Complementary: either i or fi(x) are zero
Slack: not binding

f0(x ) = g( , ) = inf
x D

f0(x) +

m

i=1

i fi(x) +

p

i=1

i hi(x)

f0(x ) +
m

i=1

i fi(x ) +

p

i=1

i hi(x )

f0(x )

i > 0 fi(x ) = 0 fi(x ) < 0 i = 0
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Karush-Kuhn-Tucker (KKT) conditions

We now assume that the functions f0, ,fm and 
h0, ,hp are differentiable and f0(x ) =g( , ). Then 
the following conditions hold

fi(x ) 0 i = 1, · · · , m
hi(x ) = 0 i = 1, · · · , p

i 0 i = 1, · · · , m

i fi(x ) = 0 i = 1, · · · , m

f0(x ) +

m

i=1

i fi(x ) +

p

i=1

i hi(x ) = 0
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KKT conditions for convex problems

Single-cell single-user power allocation: allocate the 
power over the N channels with the goal of 
maximizing the rate subject to a 

The problem is convex since it satisfies the Slater’s 
qualifications

max
P

N

n=1

log2(1 +
Pn|Hn|2

2 )

s.t.

Pn 0 n = 1, · · · , N
N

n=1
Pn = P0



 

-17-

KKT conditions for convex problems

In standard convex form
( n= /|Hn|2)

The Lagrangian L(P, , ) is 

The KKT conditions are

min
P

N

n=1

log2(1 +
Pn
2
n
)

s.t.

Pn 0 n = 1, · · · , N
N

n=1
Pn = P0

L(P, , ) =
N

n=1
log2(1 +

Pn
2
n
)

N

n=0
nPn +

N

n=1
Pn P0

Pn 0 n 0 nPn = 0 n = 1, · · · , N
N

n=1
Pn = P0

1
2
n+Pn

1
log 2 n + = 0 n = 1, · · · , N
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KKT conditions for convex problems

The optimal value can be found using the 
complementary slackness condition

There are two possible solutions that depend on the 
value log2 …

…leading to the well-known waterfilling strategy

Pn log 2 1
2
n+Pn

= 0 n = 1, · · · , N

* 2
*

2

2

0 1/
1/ ( log

log 2
1, ,

2) l 2 /o 1g
n

n n
nP n N= =

<

Pn = max 0, 1
log 2

2

Gn
n = 1, · · · , N
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Uniform power allocation

Given any 0 and , it holds 

and the duality gap (P, , )=f0(P)-g( , ) for any 
vector P is  

after some manipulations one obtains

Pn +
2
n =

1
n

1
log 2 n = 1, · · · , N

=
N

n=1

2
n

Pn+ 2
n

1
log 2 + P0

N
log 2

= 1
log 2

N

n=1

Pn
mink{Pk+ 2

k}
Pn

Pn+ 2
n
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Uniform power allocation

If power is uniformly allocated on M channels it 
yields

The strategy that allocates uniform power P0/M over 
the M subchannels that would receive positive 
power in exact waterfilling is close to the optimum

=
1

log 2

M

n=1

P0/M

P0/M +mink { 2
k}

P0/M

P0/M + 2
n

1

log 2

M

n=1

2
n mink

2
k

P0/M +mink { 2
k}+ 2

n
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Waterfilling dual: power minimization

The power necessary to achieve a certain rate rn
over channel n is Pn = (2rn-1)· n

Minimize the power with rate constraints

min
r

N

n=1
(2rn 1) · 2

n

s.t.

rn 0 n = 1, · · · , N
N

n=1
rn = r0
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Waterfilling dual: power minimization

The Lagrangian is

the optimal rate allocation is 

and the power allocated on subcarrier n is

L(r, , ) =
N

n=1
(2rn 1) 2

n

N

n=1
nrn

N

n=1
rn r0

Pn = log 2
2
n

+

2

2

*
* 2 2

2

log 2
1, ,

log l
0 /

( / log 2) /og log 2
n

n
n

n

n Nr =
<

=
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Single-cell allocation
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OFDMA resource allocation

The goal is to take advantage of the multi-user and 
frequency diversity of system to maximize the 
spectral efficiency and reduce the power 
consumption
Radio resources are:

Transmission power
Transmission formats
Subcarriers

As channels are statistically independent for each 
user, a channel that is “bad” for one user may be  
“good” for another
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OFDMA resource allocation
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Assumptions

We consider the downlink of a wireless multi-
carrier communication system with K users and N 
subcarriers
Perfect CSI at the base station
Ideal feedback channel to signal the assignment 
decision.

We introduce a binary allocation variable 

,

1 if channel  is assigned to user 
0 otherwisek n

n k
=
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Resource allocation: constraints

Univocal assignment:
Subcarriers are allocated univocally to the users: 
only one user at the time can occupy a given 
subcarrier

The presence of an integer assignment variable 
greatly complicates the allocation problem since it 
makes the problem NOT convex

,
1

1 1,...,
K

n
k

k n N
=

=
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Resource allocation schemes

Rate adaptive 
Objective: maximize the overall rate rtot subject to 
a global power constraint nPn=P0

Margin adaptive
Objective: minimize the overall power Ptot subject 
to the different users’ rate constraints.

,
1 1

n k n

K N

tot
k n

P P
= =

=

,
2

1 1
, 2log 1 n k n

K N

k
kot nt

n
r

P G

= =

+=
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Rate adaptive schemes
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Sum-rate maximization

The sum-rate maximization
problem is solved by
1. assigning each sub-carrier to 

the user that maximizes its 
gain 

2. performing waterfilling over 
all the sub-carriers allocated. 

Such a solution maximizes the 
cell throughput but is 
extremely unfair since it 
privileges the users closest to 
the BS and starves all the 
others.

,
2 ,2,

,

0

,

max log 1

. .
1

{0,1} ,

n k n
k nP nk

k
k n

n
n

k n

P G

s

P

t
n

P

k n

+
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Max-min rate allocation

Fairness is introduced by 
allocating resources with 
the goal of maximizing the 
minimum capacity offered 
to each user, thus 
introducing fairness among 
the users.

In general, fairness comes 
at the cost of a reduction 
of the overall throughput 
of the cell.

,
2 ,2,

,

,

0

max min log 1

. .
1

{0,1} ,

n

k

n k n
k nkP

k n

n
n

k n

P G

s t
n

P

k n

P

+



 

-32-

Max-min rate allocation

Problem is NOT convex
A heuristic solution is 
implemented:
1. Uniform power 

allocation on all sub-
channels P=P0/N

2. A greedy assignment 
strategy that iteratively 
allocates the sub-
carriers to the user 
with the smallest rate
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Sum-rate maximization with proportional rate 
constraints

Different users may 
require different data 
rates. In this case, a fair 
solution is to allocate 
radio resources 
proportionally to the  
users’ different rate 
constraints.

,
2 ,2,

,

1 2 1 2

0

,

max log 1

. .
1

: : ... : : : ... :
{0,1} ,

n

n k n
k nP k

k n

n
n

K K

k n

k

PG

s t
n

P

r r
k n

P

r

+

=
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Sum rate maximization with proportional rate 
constraints

The optimization problem is a mixed binary integer 
programming problem and as such is not convex  
and in general very hard to solve. We follow an 
heuristic approach:

Subcarrier allocation phase: assuming an uniform 
power distribution, the subcarriers are allocated 
complying as much as possible with the proportional 
rate constraints.
Power allocation phase: once the subcarrier are 
allocated to the users, the power is distributed so that 
the proportional rate constraints are exactly met.



 

-35-

Sum rate maximization with proportional rate 
constraints: subcarrier allocation

At each iteration, the user 
with the lowest 
proportional capacity has 
the option to pick the best  
sub-channel. 
The sub-channel 
allocation algorithm is 
suboptimal, because it is 
greedy and assumes a  
uniform distribution of 
power. 
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Sum rate maximization with proportional rate 
constraints: power allocation

The proportional rate constraints are enforced by allocating 
the power to the users in two steps
1. Find for each user the expression of Pk(tot) the total power 

allocated to each user k.
2. Distribute the power among users in such a way that the 

proportional rate constraints are met and the overall power does
not exceed P0
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Sum rate maximization with proportional rate 
constraints: power allocation

The Lagrangian is (Zk,n=Gk,n/ ) :

Leading to the power per user Pk(tot)

The optimal distribution of the Pk(tot) is found 
iteratively with the Newton-Raphson method. 

L(P, ) =
K

k=1 n k

log2 (1 + Pk,nZk,n) + 1

K

k=1 n k

Pk,n P0

+

K

k=2

k

n 1

log2 (1 + P1,nZ1,n)
1

k
n k

log2 (1 + Pk,nZk,n)

P tot
k = NkPk,1 +

Nk

n=1

Zk,n Zk,1
Zk,nZk,1
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Rate adaptive results

Simulation parameters
Number of cells: 1
Maximum BS transmission power: 1 W
Cell radius: 500 m
MT speed: static
Carrier frequency: 2 GHz
Number of sub-carriers: 192
Sub-carrier bandwidth 15 kHz
Path loss exponent: 4
Log-normal shadowing standard dev. 8 dB
Small-scale fading Typical Urban (TU)
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Rate adaptive results

Algorithms simulated
Sum rate maximization
Max-min
Sum rate maximization with proportional rate 
constraints 

Equal rate constraints
Rate constraints proportional to the pathloss

1 2 K= =�…=
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Rate adaptive results
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Max min
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Rate adaptive results
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Margin adaptive schemes
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Resource allocation: constraints

Each user has to meet a certain target rate, which 
constraints the task of resource allocation

The power necessary for user k to transmit with rate 
rk,n on subcarrier n is

1
,( ) 1,...,

N

k n
n

r k r k K
=

= =

( ),
, ,2 1 /k nr

k n k nP Z=
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WCLM: formulation

The allocator solves the 
optimization problem by 
assigning the subcarriers 
and the rate on each 
subcarrier.
Address the fairness issue 
but there are no explicit 
limits to the transmitted 
power.
Problem is NOT convex

( ), ,

,
,

,

, ,

,

min 2 1

. .
1

( )

{0,1} ,

k nr k n

r n k n

k n

k n k

k

k

k

n
n

n

Z
s t

n

r kr

k n
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WCLM: convexification

1. Relax the integer allocation 
variable k,n. 

Another way to interpret 
the optimization is to 
consider k,n as the time-
sharing factor for the k
user of subcarrier n. 

2. Introduce a new rate 
variable sk,n=rk,n k,n so that 
the objective function 
becomes convex (positive 
semidefinite Hessian )

min
s,

N

n=1

K

k=1
k,n 2

sk,n

k,n 1 1
Zk,n

s.t.
N

n=1
sk,n = r(k)

K

k=1
k,n = 1

k,n [0, 1]

3. Once the problem is 
convex, it can be solved in 
the dual domain
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WCLM dual function

Lagrangian of the problem is

Given the Lagrangian multipliers yields

While for k,n holds

,

,
, , ,

1 11 11, 1

1( , ) 2 1 ( ), , 1
k n

k n

s
N K N K

n

K N

k n k k n n k n
k nnk n kk

L s s r k
Z

µ µ
= = == = =

=

( )
,

,
, 2 , ,

log 2

/ log 2 log 2

0 /

log /
k k n

k n
k n k k n k k nZ

s
Z

Z
=

>

, ,
2

, ,

11 if arg min 1 log
log 2 log 2

0 else

k k n k k n
k

k n k n

Z
k

Z
Z

=
=
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WCLM: algorithm flow chart

The algorithm is iterative
Start from some arbitrary 
values of and computes 

k,n and sk,n.
If the users’ rate 
constrains are not 
satisfied iteratively 
increase the values of 
until all the rate 
constraints are met. This 
procedure requires the 
inversion of non –linear 
functions to converge.
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WCLM algorithm

Complexity is a major issue: due to the nature of the 
allocation problem, the solution proposed is 
iterative: depending on system parameters, 
convergence may be extremely slow.
Solution admits non-integer values of the allocation 
variable. 

It is necessary to implement a heuristic (multi-user 
adaptive OFDM, MAO) to set the vector of 
allocation variables to integer values 
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Linear programming

Resource allocation can be formulated as a linear 
programming problem:

Linear objective function
Linear constraints
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All rate requests are expressed as a multiple integer of a 
certain fixed rate corresponding to a spectral efficiency 

The power necessary for user k to transmit the rate b
(b=0, ,B) on the subcarrier n is a fixed cost

( )2 ,,log 1 k nk nP Z= +

(
,

)
, (2 1) /b b

k n k nP Z=

Linear programming: multiple tx formats
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Linear programming: multiple tx formats

( ) ( )
, ,

( )
,

( )
,

( )
,

min

. .
1 1,...,

( ) 1,.

{0,1} , ,

..,

b b
k n k n

k n b

b
k n

k b

k

b
k n

b
k n

b

P

st
n N

b r k k K

b k n

=

= =

After linearization of the 
objective function and of 
the constraints, resource 
allocation can be 
formulated as a linear 
integer programming 
(LIP) problem
Combinatorial problem 
with exponential 
complexity in N, K, and B
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Provided that there is enough 
multi-user diversity, it is 
possible adopt only one 
transmission format (B=1) with 
very limited performance loss. 
The rate requirements r(k) are 
translated into a minimum 
number n(k) of subcarriers to 
be allocated per user
By relaxing the integer 
constraint, RRA turns into a 
standard LP problem

, ,

,

,

,

min

. .
1 1,...,

( ) 1,.

{0, }

,

1

..

k n k n
k n

k n
k

k
k n

k n

P

s t
n N

n k k K

=

==

Linear programming: single tx format
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The relaxed LP RRA problem has the characteristic that it 
can be modeled as a a network flow problem. 

The network simplex method (NSM) is the most efficient 
solver for min-cost-max-flow network problems and 
outperforms other existing techniques
Because of its topology, the solution of the relaxed LP RRA is 
integral and thus, regardless of the relaxation, always a 
combination of 0 and 1

The single format choice allows a great simplification of the 
solution of the RRA problem at the cost of only a modest 
worsening of system performance. Dynamical assignment of 
subcarriers already provides a great deal of diversity!

Linear programming: single tx format
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Linear programming: power allocation

After having solved the LP single-format resource 
allocation, power can be further reduced by solving a 
single-user waterfilling problem for each user on the 
assigned subcarriers.
For user k, who is allocated the set k of subcarriers, the 
problem is formulated as 

( ),

,

,

1min 2 1

. .
( )

k n

k

k

r

r
n

k
n

k

n

n

r

Z
s t

r k=



 

-55-

Optimal allocation

The solution of an optimization problem can be 
bounded by resorting to the Lagrange dual 
Duality gap is the difference between the solution 
of the  primal problem and the solution of the dual 
problem
Qualification conditions. It has been showed that in 
multi-carrier applications, even if the original RRA 
problem is non-convex, the duality gap tends to zero 
as the number of tones goes to infinity.
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Optimal rate allocation: primal

The primal problem is 
formulated as a 
minimization problem with 
standard rate and exclusive 
allocation constraints
The problem is 
combinatorial (i.e. all 
possible allocations should 
be evaluated!) and its 
complexity grows 
exponentially with K and N

( ),

1 1

1

,

,
,

, ,

, , ,
1

min 2 1

. .

(

; {0,1}

)

| 1

k nr k n

k n

k n k n

k n k n k

N K

n k

N

n

K

k
n

Z
s t

r r k k

= =

=

=

= =

r
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Optimal allocation: Lagrange dual

The Lagrangian is

defined over the set R and all the positive rates rk,n

The Lagrangian dual function is 

( ),

1 1

,
, ,

1 1,

( , ) 2 1 (, )k n
N K N N

n

r k n
k k n k n

nnk k n
L r r r k

Z= = = =

=

( ), ,
, ,,

,

,

1 1 1

1

( ) min 2 1 ( )

. .

1

k nr k n
k k n k n

k n

N K N

n k n

k
k

K

n

g r r k
Z

n

s t
= = =

=

=

=

r
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Optimal allocation: Lagrange dual

The Lagrange dual of the RRA can be written as the 
sum of N reduced-complexity minimization 
problems

Solving the per-carrier problem still involves an 
exhaustive search over the whole set of users.

( ), ,
,,

,

,

1

1

( ) min 2 1

. .

1

k nr k n
n k k n

K

r k

K

k

k n

k n

g

n

r
Z

s t
=

=

=

=
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Optimal allocation: dual update method

The solution to the Lagrange dual problem is found 
following an iterative process:

Given the multiplier vector , we find g( ) and the 
rates allocated for each user
The rate results for the different users contribute to 
the subgradient

The subgradient is employed to update the multiplier 
vector (Ellipsoid method)

,
1

( ) ( ) ( 1,) ,
N

n
k nd kk k r Kr

=

==
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Optimal allocation: ellipsoid method

It is the multi-dimenional
extension of the bisection 
method
The idea is to localize the set 
of candidate s within some 
closed and bounded set. 
Then, by evaluating the 
subgradient of g( ) at an 
appropriately chosen center of 
such a region, roughly half of 
the region may be eliminated 
from the candidate set. 
The iterations continue as the 
size of the candidate set 
diminishes until it converges to 
an optimal

An ellipsoid with a center z and a 
shape defined by positive 
semidefinite matrix A is defined as

The update rule is the following

E(A, z) = x|(x z)TA(x z) 1
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Optimal power allocation

The same approach can be 
used to solve the 
maximization of the sum 
of weighted rates

( )2 , ,,

0

1

1

,

1

1
, ,

log

; {

max 1

. .

| 1 0,1}

k n k n k nP

n

k n k n k

K N

k n

N

n

K

k
n

w P Z

s t

P P

R

= =

=

=

+

= =
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Simulation setup

Number of cells = 1
Radius of each cell R = 500 m
Total available bandwidth W = 5MHz
Center frequency = 2 GHz
Number of subcarriers N = 64
Number of users K = 8
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Power vs. spectral efficiency
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Power vs. number of users
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MIMO resource allocation
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MIMO system

We are considering a NT×NR MIMO system with 
NT>NR so that at least Q = NT/NR users can 
transmit on the same frequency channel.
Users signals are separated by the implementation 
of linear precoding and receving filters
Signal model
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MMO optimal allocation

Margin adaptive optimization problem:
Optimize linear precoder, transmit power 
distribution and channel allocation to minimize the 
overall transmit power
Problem is NOT convex and prohibitively complex
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Block diagonalization (BD) approach

To simplify the problem, we first decide the 
precoding strategy and then allocate remaining 
resources (channels and power).
By projecting each user’s MIMO channel on the 
interference null space, users’ channels are 
decoupled so that the users transmit on the same 
channel do not interfere with each other
Allocation task is greatly simplified in absence of 
interference
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BD-based RA

Problem is still not convex 
but as the number of 
subcarriers increase the 
duality gap tends to zero 
and can be solved in the 
dual domain.
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BD-based RA – Dual domain

On each subcarrier the 
dual function must be 
evaluated over all the 
possible combinations of 
Q users
For each combination 
the precoding and 
receive linear filters 
must be evaluated!!
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Successive channel assignment

To reduce allocation complexity, we first group the 
users on the base  of their channel quality and then 
sequentially solve the RA problem.
The implementation of  a sequential allocation 
strategy forces a change in the design of the linear 
precoder.

The users of a group do not interfere with the users 
already allocated but do generate interference versus 
the sets of user allocated successively. 
MAI is treated as spatially colored noise



 

-72-

Successive channel assignment

Taking into account the colored interference the 
allocation problem can be formulated as the 
solution of Q successive problems 
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Successive channel assignment

Problem becomes more 
tractable by whithening
the colored noise at the 
receiver multiplying the 
received signal by ( )
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LP-based channel assignment

Supposing that each user 
transmits with a fixed spectral 
efficiency on all his channels:

power needed becomes a cost 
rate requirements r(k) translates 
into requesting a certain number 
of channels n(k)

Each successive problem can be 
formulated as a LP problem
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Simulation setup

Number of cells = 1
Radius of each cell R = 500 m
Total available bandwidth W = 5MHz
Center frequency = 2 GHz
Number of subcarriers N = 64
Number of users K = 8
Two scenarios: 4x2 and 2x1
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Computational complexity
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Power vs number of users
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Power vs. spectral efficiency
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Multi-cell algorithms
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Multi-cellular RRA schemes

We consider a downlink communication in an 
OFDMA-based multi-cell network with full reuse
of the frequency spectrum among cells
The most limiting factor for this systems is 
represented by multiple access interference (MAI), 
caused by users in adjacent cells that share the same 
spectrum
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Multi-cell RRA: interference

With respect to the conventional single-cell 
scenario, the main problem is the feasibility of the 
allocation.

Given a certain traffic configuration, there might be 
no solution that satisfies the rate requirements of all 
users in the system.
It is equivalent to the problem of power control for 
single-carrier cellular networks.

RRA schemes need to enforce strategies designed  
to control the users’ requirements in order to meet a 
feasible solution. 
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Multi-cell RRA: interference

MAI depends on the users allocated on the same 
channel in other cells. 
Interference power is computed as 

The required transmitted power to achieve a certain 
target k,n(i) is:

I
(i)
k,n =

Ncells

j=1,j=i

P
(j)
n G

(j)
k,n,i

P
(i)
k,n =

(i)
k,n

2+I
(i)

k,n

G
(i)

k,n,i



 

-83-

Multi-cell power control

Let us focus on subcarrier n
Suppose that in cell i it is allocated to user k(i). 
Let ,                 and . 
Power control consists in solving a set of linear 
equations in P
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Multi-cell power control

The matrix        has non-negative elements and it is 
by its nature irreducible. Invoking the Perron-
Frobenius theorem, these three statements are 
equivalent

It exist a power vector
max eigenvalue of

lim
k +

�˜G
k

= 0

G

( ) ( )1,M M<G G G
( ) 1* : =P uGP I
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Multi-cellular RRA schemes

In a multi-cell system, RRA algorithms can be 
classified as distributed and centralized

In a distributed scheme, resource allocation is 
performed locally by each base station, exploiting  
the knowledge of channel conditions of only the 
users in the cell
In a centralized approach, a radio network controller 
(god), that ideally knows the channel state 
information of all users in the system, assigns the 
radio resources aiming at a global optimum
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Distributed schemes

Attractive because of the limited (!!) amount of 
feedback and computational complexity.
Each cell has its own controller: RRA is performed 
on the base of the information available in the cell.
Hybrid schemes allow a certain amount of 

information exchanged on the network backbone.
The lack of centralized information is partially 
compensated by the implementation of iterative 
algorithms.
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Centralized schemes

Centralized solutions aim at optimizing the system 
performance globally:

Controller possesses full information about all users 
in the system

Unfortunately, they are practically unfeasible due to 
the large amount of signaling they require 
their complexity, which grows exponentially with 
the number of users in the system (scale with the 
number of cells)
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Multi-cell algorithms: distributed schemes
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Distributed schemes: the PB algorithm

This distributed algorithm addresses the problem 
by dividing it in three steps.
1. Set max SINR bounds per subcarrier per user per 

cell
2. Solve the allocation problem 
3. Implement an admission control strategy



 

-90-

PB algorithm: SINR bounds

The spectral radius of matrix              is lower 
than any sub-multiplicative matrix norm of

By imposing                   , we can set a bound for the 
max target SINR per user per subcarrier, i.e.
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PB algorithm: the allocation problem

PB propose an iterative scheme that 
1. implements a heuristic that 

allocates the subcarriers to users
2. solves a convex problem in the 

SINR variable designed to 
minimize the transmit power, 
having assumed that the 
interference power is fixed

3. performs power control so that 
each user meets its target SINR

Algorithm is iterated until 
convergence
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PB algorithm: the allocation problem

The admission control strategy consists in switching 
off those users that:

due the max SINR bounds, do not reach their target 
rates
exceed a certain predetermined power limit

There is a fairness problem!!
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Distributed schemes: a LP approach

As in the single-cell scenario, we have formulated a 
linear programming approach with just a single 
transmission format for all users.
The distributed approach leads to an iterative 
procedure: at the beginning of each new iteration 
the resources’ costs in each cell are updated taking 
into account the interference levels of the previous 
iteration.
Due to interference, allocation in one cell perturbs 
the allocation in all neighboring cells
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LP algorithm: load control

Allocation convergence is not guaranteed and the 
algorithm needs to be modified to reach a stable 
allocation.
We implement a load control mechanism that 
progressively reduce the total amount of resources 
allocated in each cell until a stable allocation is 
achieved
LP formulation still maintains the network flow 
topology
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LP algorithm: formulation

In each cell the LP 
problem is formulated so 
that a certain number N(i)

of subcarriers has to be 
allocated.
Each user k can get at 
most n(i)(k) resources.
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LP algorithm: packet scheduler

By assigning a different number of  subcarriers to 
users, the LP RRA sets the actual rate offered by the 
system to each user.
Exploiting multi-user diversity, it tends to assign 

most of the resources to users with the best 
channels.
In order to compensate the displacement of 
resources due to the RRA, in each cell we 
implement a Packet Scheduler (PS) that aims at 
maximizing fairness among users by setting the 
max number of resources for each user
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LP algorithm: architecture

At the beginning of each frame, in each cell the PS 
sets the maximum rate per user
Given the requirements dictated by the PS, the RRA 
LP iterates until it finds a stable allocation in each 
cell
If, after a certain number of iterations, a stable 
allocation has not been found, the load of the cells 
is progressively reduced until allocation converges.
The allocation results are fed-back to the PS so that 
it updates the requirements to enforce fairness
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LP algorithm: packet scheduler

Packet 
Scheduler 

Resource
Allocator

Feedback on last 
resource allocation
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Multi-cell algorithms: centralized schemes
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Centralized approach

The maximum achievable performance of multi-cell 
resource allocation is currently unknown. 
In analogy with the bound developed for the single-
cell scenario, we develop a bound on the 
performance of centralized resource allocation in 
the dual domain.

Pros: Analytically sound, useful bound to compare 
other algorithms’ performance
Cons: Exponential complexity, requires the 
knowledge of all the users channel gains at the 
central controller
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Optimal bound: primal

The primal is formulated as 
a global minimization 
problem 
The problem is 
combinatorial and its 
complexity grows 
exponentially with K and N 
and the number of cells
To partially reduce the 
complexity we admit only a 
small set of possible 
transmission formats

( )( ) ( ) ( )
, , ,,

( ) ( ) ( )

1

, ,

( ) ( ) ( )
, , ,

1

1

1

min

.

,

, ; {

.

(

}

)

| 0,1 1

N K

i n k

N

i i i
k n k n k np

i i i
k n k n

i i i
k n k n

n

K

k
k n

r

i k

i n

f

s t

r r k

R

= =

=

=

= =



 

-102-

Optimal bound: Lagrange dual

The Lagrange dual of the RRA can be written as the sum of 
N reduced-complexity minimization problems

Due to interference, the solution of the dual optimization 
problem needs an iterative strategy (even in the centralized 
approach!)
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Optimal bound: Lagrange dual

The main idea is to locally optimize via coordinate descent.
For each , we first find the optimal user and transmission 
format for cell #1 while keeping fixed  the allocation in all 
other cells, then we find the optimal user and transmission 
format for cell #2 keeping all other fixed, and so on. 

Note that, during each iteration, only a small finite number 
of power levels need to be searched over.
Such an iterative process is guaranteed to converge, because 
each iteration strictly decreases the objective function. The 
convergence point is guaranteed to be at least a local 
minimum.
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FFR-A and FFR-B

Static channel 
allocation according 
the pattern in figure
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FFR-A and FFR-B
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Simulation setup

Number of cells = 7
Radius of each cell R = 500 m
Total available bandwidth W = 5MHz
Center frequency = 2 GHz
Number of subcarriers N = 16
Number of users K = 8
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Measured spectral efficiency
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Power vs. spectral efficiency
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Power vs. Number of users
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